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Transverse instabilities in chemical Turing patterns of stripes
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We present a theoretical and experimental study of the sideband instabilities in Turing patterns of stripes. We
compare numerical computations of the Brusselator model with experiments in a chlorine dioxide—iodine—
malonic acid(CDIMA) reaction in a thin gel layer reactor in contact with a continuously refreshed reservoir of
reagents. Spontaneously evolving Turing structures in both systems typically exhibit many defects that break
the symmetry of the pattern. Therefore, the study of sideband instabilities requires a method of forcing perfect,
spatially periodic Turing patterns with the desired wave number. This is easily achieved in numerical simula-
tions. In experiments, the photosensitivity of the CDIMA reaction permits control and modulation of Turing
structures by periodic spatial illumination with a wave number outside the stability region. When a too big
wave number is imposed on the pattern, Bekhaus instabilitymay arise, while for too small wave numbers
an instability sets in formingigzags By means of the amplitude equation formalism we show that, close to the
hexagon-stripe transitions, these sideband instabilities may be preceded by an amplitude instability that grows
transient spots locally before reconnecting with stripes. This prediction is tested in both the reaction-diffusion
model and the experiment.
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[. INTRODUCTION Turing-like concentration patterns have also been ob-
served during the irreversible polymerization of acrylamide
Half a century ago, Turinfl] developed a theory of mor- in an oxygen atmosphere in the presence of methylene blue
phogenesis which has had a profound impact on theoreticalulfide [5]. But the main drawbacks of this system are that,
developments in pattern formation. Turing showed that staence the polymerization is over, the pattern cannot be
tionary concentration patterns may spontaneously develop ichanged by further external perturbation, and that the driving
an open system containing two reacting substances providédstability mechanism is still under discussip®-8|. In a
one of them diffuses much faster than the other. Nowadaysecent theoretical work9], it was suggested that a certain
the Turing mechanism is still considered a prototype for theclass of electrochemical systems might exhibit Turing-type
formation of coherent patterns in nonequilibrium systemsstructures without suffering from the restriction on the dif-
Despite considerable efforts to verify Turing’s proposal ex-ferent rates of the transport processes. This therefore opens
perimentally and to find stationary spatial patterns in a reapromising perspectives in the study of further Turing-like
chemical system, it took almost 40 years before the first exstructures.
perimental evidence of convection-free Turing patterns was The stability of patterns against spatial modulations is a
reported. The disparity in diffusion coefficients assumed irkey issue, because long-wave instabilities are pattern selec-
the Turing mechanism was hard to achieve because smalbn mechanisms in systems with translation symmetry. In
molecules in aqueous solution have diffusion coefficientshe case of a pattern of rolls, the Eckhaus or the zigzag
that do not differ substantially from each other. instability may appear when the homogeneous translational
Castetset al., working with an open, continuously fed un- invariance is spontaneously broken. Spatial modulations of
stirred reactor(CFUR) observed spatial pattern formation patterns have been much studied in convective flLifs11],
arising from a homogeneous steady state in the chloritebut, to our knowledge, they have scarcely been discussed in
iodide—malonic acidCIMA) reaction[2]. Since then, Turing chemistry. On the theoretical side, the three instabilities of
patterns have been extensively studied in the CIMA reactiostriped patterngcross roll, Eckhaus, and zigzagere well
and in its variant, the chlorine dioxide—iodine—malonic acidreproduced within the chemical Schnackenberg mpti2).
(CDIMA) reaction[3]. In these experiments, sufficient dif- Experimentally, illumination and electric fields have been
ferences in the mobilities were achieved by using a macroused to modify Turing-like patterns obtained during poly-
molecular indicator that partially immobilizes the “critical” merization in the acrylamide-methylene blue-sulfide—oxygen
species by reversible complexations. Depending on the comeaction, and the same system has been exposed to spatially
trol parametergconcentration of reactants and diffusion co- periodic light perturbatiofi6]. Recently, Mlmizuriet al.[13]
efficienty, the dynamics of this reaction exhibits severalhave revealed the sensitivity of the CDIMA reaction to vis-
kinds of steady spatially periodic patterns close to onsetible light and proposed a simple model for its photosensitiv-
hexagons, stripes, and “rhomb$4]. (Usually the so-called ity. This study opened the possibility of controlling Turing
black eyes arise as secondary modes far from thregdgld  patterns by illumination.
Our main aim in the present work is to discuss the mecha-
nism of modulational instabilities in chemical systems, by
*Electronic address: carlos@fisica.unav.es comparing numerical simulations of the Brusselator model
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with experiments in a CFUR reactor with the CDIMA reac-
tion. In Sec. Il we summarize the stability limits obtained
previously for the different patterns in the model. In Sec. lll, H\: ’ \‘
the experimental setup is introduced. Both the model and the % N
experiments display hexagons and stripes as stationary solt 45 |
tions, but we focus our attention on patterns of stripes. The= \
stability of stripes, in terms odmplitude equation§l4], is & \\ o
discussed in Sec. IV. Close to the hexagon-stripe transition £ & 3
unstable hexagons may alter the modulational destabilizingg
mechanisms of stripes. In Sec. V, we analyze the Eckhau:
instability, and in Sec. VI the zigzag instability in these sys-
tems is discussed. The paper ends with conclusions and
discussion of the results in Sec. VII.

M Sursearoaq

p=0.12 O Swipesorzz u=-0.005

FIG. 1. Stability regions for hexagonshaded regionsand
Il. STATIONARY PATTERNS IN THE BRUSSELATOR stripes (striped arepin the Brusselator model obtained from the

MODEL amplitude equationgEq. (2) (see Ref[17])]. Simulations and Fou-

. rier transforms for different values of the supercriticaligy and
We have chosen the Brusselator model because it perrryL%ess wave numbeg = k; k. are shown.

analytical calculations in qualitative agreement with experi-

ments [15]. It consists of two coupled reaction-diffusion

equations: points with periodic boundary conditions is used. The

concentrationX is represented in a gray scale varying from
dX=A—(B+1)X+X?Y+V2X, black (minimum) to white (maximum in Fig. 1. In the same
figure we also gather the patterns resulting from integration
3 Y=BX—X2Y+DV?Y, (1)  and their corresponding Fourier transforms for several values
of u.
whereX andY stand for the concentrations of activator and We begin with a random initial mesh and let the model
substrate, respectively) is the diffusion ratio of the two evolve until a stationary state is reached. Then, the super-
species, and\ and B are constant parameters, one of themcriticality w is increased in a small stefpu=0.02 and the
(B) being selected as theontrol parameter For 7=1/D resulting pattern is recorded. Near thresh@ld=0.12, an
<(J1+A2-1)/A, the homogeneous steady solution initial random mesh evolves into a perfect patternHof
(Xs,Ys)=(A,B/A) becomes unstable against stationary perhexagons. When the upper stability limit feir, hexagons is
turbations, leading to a Turing pattern. The threshold valugrossed(.=0.30), these solutions are replaced by stripes
for the Turing instability isB.=(1+Az)? with a critical  with the same wave number as the hexagons. Since this wave
wave numberk,=Az. From now on, it is convenient to number is too small, the stripes become wavy and their Fou-
deal with the rescaled control paramejer(B—Bc)/B:,  rier transforms exhibit a pair of off-axis satellite modes. Fur-
known as supercrltlcallf[y. - ) ther increase inu gives rise to zigzaggu=1.10, which
Results on the spatial stability of hexagonal Turing pat-gisplay five main pairs of modes, the critical one and four off

terns in this model have been extensively reported in previgitical. These modes have the same horizontal wave number
ous work[16,17]. Special attention has been paid to the tran-

. . . component and they become more intense wheés raised.
sition bgtwegn h_exagons and stripes. The.m:.:un results a e angle between zigs and zags decreases whén-
summarlzed In F'g'.l.' Hexagons are st_able inside the shad eases, approachingr3 rad. When the stability region of
regions. More specifically, hexagons with a total phase sum: . - ;

; - Ho hexagons is enteregu=2.00, the off-axis modes be-
ming to 7r, denoted a$l , hexagons, are stabilized at thresh- : . . . .
old (bottom of Fig. 1. These coexist with stripes fou come the most intense. Flnglly, zigzags end up in very dis-
<umy . Stripes are the sole stable solution within the aree{ortedHO hexagons W_'th a higher wave numb_er.
with oblique lines. Thereafter, hexagons with a zero total " @ second run this hexagonal pattén-2) is taken as
phase Hy, or reentrant hexagorid8]) coexist with stripes. the initial condition, butw is diminished. After the ﬂrs_t (_:ie—
For 4> us only H, hexagons remain stable. These bound-Créase the pattern becomes more ordéred0.70, but it is
aries were obtained by using the amplitude equation formal™ade up of slightly distorted hexagons. Its Fourier transform
ism, which is valid only when sufficiently close to threshold. Shows three peaks with different values. This pattern remains
Another interesting result previously describgth,17] is ~ unchanged on lowering. until, for 4<0.4, the stripes be-
that the average wave number in simulations increases whet®me stable and replace the hexagons. The remaining mode
w increases, a relevant fact in the wave number selectiohas a too long wave number, becomes unstable, and is re-
process. placed by a single mode with a different orientation and a

To check the validity of these stability regions, we per-lower wave number. For even smallgr H_ hexagons re-
form numerical integrations of the Brusselator model withplace stripes.
fixed valuesA=4.5 andA»=1.59. A simple but efficient These simulations show that, starting from suitable initial
odd-even hopscotch methdd2] on a mesh of 128128  conditions, wave number and planform selection may be
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light intensity (150 W) applied for 20 min, after which we
shone the desired perturbation through the slide for 10 min.
Afterward, the slide is removed£0) and the unstable pat-
tern begins to evolve.

The experimental control parameter is the concentration
of chlorine dioxidg ClO,]. We select two values which give
stable patterns of stripes. In one case the stripes are close to
the stable range of hexagons and in the second case we re-
main close to the border of stability of hexagonal Turing

FIG. 2. Patterns of stripes in experiments for the same concerstructures. For different imposed wave numbers, the pattern
tration values(a) Spontaneous patterfh) Spatially forced pattern. is unstable and, once the transparency is removed, it starts to

evolve into a more stable situation.
studied. In the following sections we focus our attention on
the sideband instabilitie€Eckhaus and zigzag instabilitles IV. AMPLITUDE EQUATIONS
in patterns of stripes.

A weakly nonlinear analysis around the stationary refer-
ence state gives the so-callathplitude equationg/hich for

. EXPERIMENTAL SETUP the three modes that form hexagons take the following form:

Experiments on the CDIMA reaction have been per-

formed in a thermostated CFURee Refs[19], [20]) at To0A1= pA1t 3>2<1A1+UK2K3—|A1|2A1
4+0.5°C. It consists of a continuously fed stirred tank reac- 5 5
tor (CSTR where the reagents are mixed and in contact with —h(|Axl*+|As]9) Ay, 2

a thin agarose gel laygR% agarose, 0.3 mm thickness, 20
mm diameter. The gel layer is separated from the feedingWhere the subscripts in the derivatives standdgr=;-V,
tank by two membranes: a nitrocellulose membré®ehle- andf; denote unit vectors in the direction of the three hex-
icher & Schnell, pore size 0.45 mnand an Anapore mem- agonal modes. Companion equationsAgrandA; are sim-
brane impregnated with 0.5% agarose @#&lhatman, pore ply obtained by subscript permutations.
size 0.2um). In order to ensure that the arising structure is Beyond a threshold value hexagons are replaced by
two dimensional, we select a thickness of the gel smallestripes. Without loss of generality we assume that stripes
than the wavelength exhibited by the system for the concerselect the modé;=(1,0), and Eq(2) must be replaced by
trations selected in this experiments. The reagents were fele Newell-Whitehead-SegéNWS) equation[14]
into the CSTR by a peristaltic pump, previously calibrated to
ensure the correct control in the concentration values. The
input concentration of reagents were as follows: variable IA = uA+
[ClIO,]=0.07 and=0.09 mM, and fixed[l,]=0.45 mM,
[H2SG;]=10 mM, and[malonic acid=1.2 mM. We added jn which the spatial term accounts now for the different scal-
polyvinyl alcohol(PVA) at[PVA]=10 g/l, as an indicator of jng in thex andy directions[14].
the activator concentration and to increase the ratio between
the diffusion coefficients of activator and inhibitor. In this
way, parts with high activator concentration exhibit garnet
coloration, while zones in which the inhibitor is dominant The last equation has a stationary solutioh,
show light yellow color. Fof CIO,]=0.07 mM, spontaneous =+u—q%e'% (u>q?). Perturbations around this solution
stable stripes are formed with a wavelengith=0.54 take the formA,=(Ju— g2+ r)e'® ¢ A linear stabil-
+0.02 mm, while for the second valugClO,]=0.09 mM, ity analysis gives at lowest order the well-knovphase
the steady pattern of stripes displays=0.48+0.02 mm. equation[14]

The photosensitivity of the CDIMA reactidri. 3] is used
to impose initial patterns on the systd@1] by means of dp=Ddi+D, d¢b (4)
illumination from the side with a 150 W halogen lamp. Be-
fore reaching the reactive gel, the light of the lamp is filteredwith D= («—39?)/(x—qg? andD, =q/k.. Therefore, for
through a slide with a static pattern of parallel black andq2>q§=,u/3 the Eckhaus instabilityarises, while forq<<0
transparent bands. Varying the width of these bands, differemhodulations perpendicular to the stripe axis can grow, pro-
wavelengths may be forced in the pattern. An example oflucing azigzag instability Although these limits fail to de-
spontaneous and initially forced patterns of stripes is showscribe sideband instabilities far from threshold appropriately,
in Fig. 2. The periodically perturbed patteffig. 2(b)] has  we shall keep these expressions as a reference in the follow-
the same wave number as the spontaneous paiern2@]  ing discussions.
and remains stationary in time. The scenario can be different near the hexagon-stripe

Standard protocol for the experiments always begins byransition. When hexagons are slightly unstable, a lowering
pumping reagents. After 4 h, stationary stripes cover then the amplitude of stripes should lead, either globally or
whole media. Then the pattern is deleted by homogeneouscally, to a transverse amplitude instability. Although small,

H 2
|
ax—z—kcai) A= |ALPA, &)

A. Sideband instabilities in striped patterns
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the quadratic resonant term in E&) may induce hexagons \ .'.'Q‘.\ \ ‘

in places where the phase gradient increases. \ ..\\ \
To discuss amplitude stabilization of transverse modes, le! \ A .\

us consider the stripe solution in E@), A;=A, = .Ae'9%X ' *

A,=A3=0, wheregqa=ka—k.. Bands with|A|?=u—q3

are stationary solutions of Eq2), provided h>1. They ‘\ k » \

could be unstable not only through phase modes, as assume (a)
in Eq. (4), but also for transversal amplitude perturbations.

The quadratic term shouldﬁ fav9r re;ongnt triads of modes \‘ \ ‘
satisfying the conditionsky+kg+kec=0 (Ga+Gs+Gc

=5). For simplicity, we shall consider only the particular

case of squeezed hexagonal perturbations that obey the col

ditions gax=—(1/2)qgx= _(1/2)quv. Osy= —Ccy- (The \\ \\ \\

general case of sheared hexagons is much more difficult tc ) v

deal with analytically. Therefore, we assume that perturba-

tions in the formA;=A=(A+a)e'9*, |A,]*=|Ag|*=bA, ‘
=be'98("e'") act on the system. Herg indicates the unit \
vector along a transverse moBeAfter linearizing we obtain
two uncoupled equations:

d@a=(p—dp)a-34%, (58 \\

ab=(u—q3)b—h.A%a+uv.Ab. (5b)

-

FIG. 3. Numerical simulations of the Brusselator féa)

The first equation does not depend bnAs v A<h|A]2 ~ #=0:09.4=0.26;(b) ©=0.15,G=0.32; (c) ©=0.35,4=0.42.

(slight subcriticality Eq. (5b) can be written in the form ) .
In Ref.[22] it was proved that the coefficienBs, andg are

&tbw—qé—h(wqi), (6) negative, so that the mo_du_lanonal instability does not satu-
rate and the phase description breaks down. Numerical simu-

so, as the right-hand side becomes positive, transverse arlt"i‘—tir?nﬁ o_f NV;]IS quu|ationi3) Sho‘g that the phase gradients
plitude modes may destabilize a pattern of stripes. NoticéWNich give the local wave numbebecome steeper at some

that g2=(1/4)q2, so that stationary stripes can become un_places and lthe amplitude is depressed at Iocat_ions where
stabIeBwhenevg'r phase gradients grow. In the case of pure strigespuld

decrease to zero at these places and the phase becomes un-
h—1 defined, leading to the so-callgghase slipg22]. In two-
ga= P (77  dimensional systems, this results in nucleation or annihila-
- tion of a pair of stripes through dislocations, likely due to the
) ) excitation of transverse modg23].
Whether stripes will suffer a short-wave-number or an am-  comparison of the stability threshold in E) with the
plitude instability leading to transient distorted hexagons dexhaus valueg2= /3 gives the condition £h<11/8.

¥Whenh lies in this interval the transverse amplitude instabil-
ity will appear before the Eckhaus instability takes place. For
the parameter values taken in the simulations of the Bruss-
elator model, however, we obtain=2.9 and hence a trans-

V. ECKHAUS INSTABILITY verse mode can grow only locally, but not globally, at places

Detailed theoretical and numerical analysis of this insta" hereA is sufficiently small.

bility under the NWS equation framework can be found in
Ref. [22]. In general, this instability is difficult to observe A. Numerical simulations of the Eckhaus instability
experimentally owing to the appearance of other secondary Tg confirm that such a situation can occur in the Bruss-
instabilities, the limitation of experimental techniques 1o in-g|ator, we performed numerical computations starting from a
duce initial patterns, and the unavoidable effects of laterahattern of perfect parallel stripes as initial condition, but with
boundaries. However, this instability has been reported ifpeir wave number modified by a positive amoantk= k.
rather different physical systenig1]. _ _ +q). This is achieved by changing the spatial stepin the
To describe the Eckhaus instability appropriately in thegirection perpendicular to rolls. Three results for stripes with
framework of the NWS equatio(8), one must replace the q initially outside the Eckhaus stable region are gathered in
simple linear phase Eq4) by an equation in the forfl4] i 3. In the first stages, a modulational instability that com-
) 4 ) presses stripes at some places of the computation lattice is
01 p=D 95— Dadxd+ 9o (dxP)“]. (8)  discernable. The amplitude and the wave number diminish at

lar system, the stability threshold in E@7) has to be
compared with the corresponding sideband stability limit.
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g

P

a v el - become wavy and domains of tilted stripes in two preferred

number of stripes locally14].

In the framework of the NWS equatidB), this instability
occurs for negative off-criticalf<0) wave numbers. At the
lowest order, the linear evolution of zigzags is well described
by Eqg. (4), but higher order derivatives and nonlinear terms
must be added to saturate this instability. By symmetry argu-
ments the following phase equation is deduf®&d:

“ directions arise in the pattern. This tilting increases the wave

=

q 3 22, 1 4
kc + ch (ay(ﬁ) ay¢ 4kc ayd) (9)

After applying d, to this equation, taking/=d,¢ and res-
(b) caling time, one arrives at the well-know@ahn-Hilliard
equationdescribing the dynamics of phase separation in con-

FIG. 4. Experimental Eckhaus instability in CDIMA reaction for servative systemfg5], which is written in the form
two concentrations of chlorine dioxidéa) [CIO,]=0.07 mM: t

=0, 15, and 60 min(b) [ClIO,]=0.09 mM:t=0, 60, and 140 min. SF ¢2 g1
Both sequences show the temporal evolufisam left to right of o= —, Fuvl=| q > + 3 + E(&yz//)zdy,

y 1
stripes with an initial wave number larger thap. oy (10)

these locations until some transverse mode grows up locally.
In the sequences of Figs(a and 3c) the value ofu is close  In which F is the Cahn-Hilliard free energyThe conserved
to the hexagon-stripe transition, so that distorted hexagonguantity in our case is the total phade= [{¢dy.) This
are locally made out, but after tilting the stripes and inducingexpression admits two kinds of solutions: periodic waves,
a wave number adjustment they disappéaventually some  always unstabld26], and kinks connecting the statgs=
isolated spots remain trapped inside stripétice that the  + ,/2qy. A solution with a given periodicity evolves toward
mechanism is similar for eithed ; or Ho hexagons. Fo  another with longer wavelength. Isolated kinks are stable,
far from the bistability regioriFig. 3(b)] instead, the usual ;1 an array of kinks undergoes coarsening by an annihila-
phase slip leads to a pair of dislocations, which climb 0 th&;gn process and without characteristic length scale. Thus, the
sidewalls[24]. average size of the domain enclosed between kinks increases
. . - regularly in time. The interaction between two kinks is ex-
B. Experimental Eckhaus instability ponentially decaying, and so weak that tiny external interac-
Concentrations used in the experiments are close ttions can lock these otherwise unstable configuratj@
([ClO,]=0.07 mM) and far from [(CIO,]=0.09 mM) the Busse and Au€li28] considered the stability afndulating
hexagon-stripe transition value. The evolution for the firstrolls resulting from a zigzag instability in the NWS ampli-
concentration is shown in Fig(d). We force stripes with an  tude framework. Undulating rolls are unstable against longi-
unstable wavelengthh =0.41 mm<\.=0.54 mm. During tudinal modulations foq§>,u/3 (Eckhaus limii and against
the first stages, the parallel bands break quidilyjust 15 transverse modes fay®<u/7, so that no stable band for
min) into spots. They form transient, quite distorted stretchedindulating rolls exists. In numerical computations, however,
hexagons. After 60 min, these unstable spots disappear akdulating rolls are obtainetsee Fig. 1 These might be
most completely, the stripes are reorienf€iy. 4(c)], and  stabilized through some pinning effect due to the finite com-
their wave number again reaches the stable band. putation size. As suggested in RgR27] the pattern selects
We repeat the procedure for the second concentration chdew quasiresonant modesigain likely owing to the finite-
sen (ClO,]=0.09 mM). The evolution of the imposed ness of the computation grid or to wave packet effects.
stripes is shown in Fig. ). Initially, the pattern displays
few defects and inhomogeneities at some places. The bigger A Numerical simulations of the zigzag instability
defect gives rise to a couple of dislocations propagating . _ )
through the pattern in opposite directions, as one can see AS discussed in Sec. Il a pattern of stripes undergoes a
from the central snapshot in Fig(l}, taken after 60 min. In  2/9zag instability when a gradual increase anis applied
the same figure the formation of a deformed hexagonal atFi9- - This means that the stability bound for zigzags
rangement of transient spots is noticeable, which finally disMoves away from the ling=0 predicted by the phase equa-

appears. After 140 mifto the left in Fig. 40)], the pattern tion (4). For patterns with negative excess wave numbers
exhibits stripes with some dislocations. the zigzag instability leads to a fast waving of stripes, which

ends inreconnectiondetween stripes. This amplitude insta-

bility progresses differently depending on the valueupfas

shown in Fig. 5. For low values ok, H, hexagons grow
For too small wave numbers the translational invarianceglobally from stripes, while for high values of, Hy spots

of stripes is broken by the zigzag instabilifg1]. Stripes form locally at given places inside the pattern. These tran-

VI. THE ZIGZAG INSTABILITY
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(a)
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®) (®)
‘ \ FIG. 6. Experimental zigzag instability in CDIMA reaction for
two cases.(@) [ClO,]=0.07 mM: t=0, 195, and 610 min(b)
[CIO;]=0.09 mM: t=0, 40, and 180 min. Both sequences show
the temporal evolution of stripes with an initial wave number
) \ smaller tham .
A © \ almost immediately. Undulations give rise to zigs and zags,

apparent at the center picture in Figbg after 40 min. Later
FIG. 5. Temporal evolution of the Brusselator with initial stripes on (at t=180 min), the pattern on the right in Fig(l® is
unstable against the zigzag instability f@ »=0.10,q=—-0.12;  finally established. Notice that during this evolution hexa-
(b) ©=0.15,q=—0.13; (c) =0.65,q=—0.08. gons did not play any role.

———————"

D1

G

— L
—

sient spots contribute to rearrange the wavy stripes which VII. CONCLUSIONS

end up in straighter rolls with many point defects and with a ) . . . . .
wave number inside the stable band. At intermediate values " this paper, we have investigated the sideband instabili-

of u, for which only stripes are stable, undulating rolls re- f[ies of Turing patterns of stripes in the Brusselator model and

connect at some places leading to a kind of oblique graif the CDIMA reaction. Beginning with the amplitude equa-

boundary. These features are also in agreement with earfP"S for the main active modes in the pattern, we discussed
experiments in Ref29]. under what conditions a long wavelength instability can be

precluded by a transversal amplitude instability. Sufficiently
close to the hexagon-stripe transition, this instability can give
rise to distorted hexagons that evolve into a striped pattern
The experimental sequence in Figaphas been obtained with a stable wave number. The influence of the unstable
by printing an initial pattern of stripes with =0.62 mm  hexagons should be much less far from the hexagon-stripe
>\.=0.54 mm. Snapshots in the upper row correspond tdorder.
[CIO,]=0.07 mM (close to the region of stability of hexa- In the Brusselator model, we studied numerically the sta-
gons. The first snapshot in Fig.(6 shows the pattern after bility regions of stripes, which differ substantially from the
15 min. Here, hexagonal arrays of spots at the bottom and iourves predicted within the amplitude equation framework.
a stripe to the right can be made out, and several defec&xperimentally, it has been confirmed that illumination per-
distinguished. After 195 min, the fine initial bands becomemits the control of Turing patterns in the CDIMA reaction.
rougher and slightly unfolded at some spots. In other placeBy forcing an initial pattern with a wavelength different from
strong undulations are distinguished. The process continugkle critical one, we observed an evolution that is similar to
with ruptures and reconnections between the stripes, in sudhe dynamics reported in numerical simulations. The experi-
a way that in the right pattern in Fig. 6 there is a stablemental control parameter is the concentration of chlorine di-
mixture of zigzag patches with undulations, reconnectionspxide [ClO,]. We considered two values ¢fClO,], one
and spots in a messy pattern. After 610 min the pattern is stitlose ( CIO,]=0.07 mM) and another far from the hexagon-
very disordered, but the wave number has increased, aga#iripe transition [[CIO,]=0.09 mM).
reaching the critical value\.=0.54+0.02 mm. Although For too small wave numbers close to the stability ranges
this pattern differs substantially from the simulations in Figs.of hexagons, transient spotlike defects grow locally among
5(a) and Hc), the nucleation of spots seems crucial in read-stripes in numerical simulations and in experiments. The fi-
justing the wave number. nal pattern consists of stripes with a stable wave number. Far
Pictures in Figs. @) show the evolution for{ CIO,] from the hexagon-stripe transition, the Eckhaus instability
=0.09 mM (far from the hexagon-stripe transitipand the leads to the creation of defect pairs which subsequently an-
same wavelength as before. The initial stripes become wavyihilate each other, yielding a stable striped pattern with a

B. Experimental zigzag patterns
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slightly modified wave vector. of the modulational instabilities in simulations of this model
When initial stripes are too wide they display undulationsand in experiments with the CFUR chemical reactor are in

and zigzags. Undulating stripes are found to be stable in good qualitative agreement.

full range of slightly off-optimal wave numbers. If the im-

pressed wavelength is increased, transient undulations give

rise to domains of zigs and zags. Finally, if the initial wave- ACKNOWLEDGMENTS
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